
Reducing Fragmentation for In-Line Deduplication 
Backup Storage and Cache Knowledge in Cloud 

D. Shanmugasundari¹, K. Anbumathi²
1M.phil, Research Scholar, Bharathiyar Arts and Science College for women.

²Assistant Professor, Department of Computer Science, Bharathiyar Arts and Science College for women. 

Abstract-Deduplication is process of elimination of repeated 
data in storage system and it is powerful technique to reduce 
storage costs. Fragmentation mainly caused by replication 
from existing backups of the same backup set, so the 
duplicated copies cannot be deleted from garbage collection. 
Cloud storage is a model of data storage where the digital data 
is stored in logical pools. Cloud back up refers to backing up 
data to a remote cloud based server. To reduce the 
fragmentation, we propose History-Aware Rewriting 
Algorithm (HAR). HAR algorithm checks the data container 
to avoid overflow of data. A fragmentation approach is to 
store the lists in the blank areas of containers, which on 
average is half of the chunk size. Container Marker Algorithm 
(CMA) provides id .Each ID is paired with a backup time, and 
the backup time indicates the dataset’s most recent backup 
that refers to the container. 
Index Terms – Cloud storage, Deduplication, Fragmentation 
problem, Restore performance. 

1. INTRODUCTION

Deduplication is the paradigm in modern backup 
systems because of its enormous ability of improving 
storage efficiency. Deduplication based backup system 
divides a backup stream into variable sized chunks of data 
and identifies each chunk by its ID. An ID index is used to 
map stored chunks to their physical addresses. The 
containers are the basic unit of read and write operations. 
During a backup, the chunks that need to be written are 
aggregated into containers to preserve the spatial locality of 
the backup stream. During a restore, the backup stream is 
reconstructed according to the data. The containers serve as 
the prefetching unit depends upon space. 

Deduplication is process of automatic elimination 
of duplicate data in storage system and it is most effective 
technique to reduce storage costs. Deduplication effects 
predictably in data fragmentation, because logically 
continuous data is spread across many disk locations. 
Fragmentation mainly caused by duplicates from previous 
backups of the same back upset, since such duplicates are 
frequent due to repeated full backups containing a lot of 
data which is not changed. Systems with in-line deduplicate 
data intends to detects duplicates during writing and avoids 
storing them such fragmentation causes data from the latest 
backup being scattered across older backups. 

The data deduplication operation inevitably 
introduces some amount of overhead and often involves 
multiple processes at the solution level, including 
compression .This means that the choice of where and how 
deduplication is carried out can affect the speed of a backup 
process. The deduplication process can be applied during 
ingest or in post-processing. It can also occur at the 

destination end of a backup operation or at the source or in 
a hybrid mode where part of the process occurs on the 
target and part in software on a backup server. 

Fig 1.1Deduplicationfor Backup and Recovery 

2. PROBLEM FORMULATION

This section consists of security model in cloud 
environment. Two kinds entities will be involved in this 
deduplication system, including the user and the storage 
cloud service provider (S-CSP). Both client-side 
deduplication and server-side deduplication are supported 
in our system to save the bandwidth for data uploading and 
storage space for data storing. 
• User:  The user is an entity that wants to outsource data
storage to the S-CSP and access the data later. In a storage
system supporting deduplication, the user only uploads
unique data but does not upload any duplicate data to save
the upload bandwidth.
•S-CSP: The S-CSP is an entity that provides the
outsourcing data storage service for the users. In the
deduplication system, when users own and store the same
content, the S-CSP will only store a single copy of these
files and retain only unique data.

3. CLOUD ENVIRONMENT

Cloud computing is a computing paradigm, where 
a large pool of systems are connected in private or public 
networks, to provide dynamically scalable infrastructure for 
application, data and file storage. With the advent of this 
technology, the cost of computation, application hosting, 
content storage and delivery is reduced significantly.  

Cloud computing is a practical approach to 
experience direct cost benefits and it has the potential to 
transform a data center from a capital-intensive set up to a 
variable priced environment.  

D. Shanmugasundari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016,2507-2510

www.ijcsit.com 2507



 
Fig 1.2 Cloud Storage 

 
The idea of cloud computing is based on a very 

fundamental principal of reusability of IT capabilities. The 
difference that cloud computing brings compared to 
traditional concepts of “grid computing”, “distributed 
computing”, “utility computing”, or “autonomic 
computing” is to broaden horizons across organizational 
boundaries. 

 
4. CONTAINER MARKER ALGORITHM 
The design of CMA is used to efficiently 

determine which containers are invalid. CMA assumes 
users delete backups in a FIFO scheme, in which oldest 
backups are deleted first. The FIFO scheme is widely used, 
such as Drop box that keeps data of latest 30 days for free 
users. CMA maintains a container manifest for each 
dataset. The container manifest records ids of all containers 
related to the dataset. Each ID is paired with a backup time, 
and the backup time indicates the dataset’s most recent 
backup that refers to the container. Each backup time can 
be represented by one byte, and let the backup time of the 
earliest non deleted backup be 0. One byte suffices 
differentiating 256 backups, and more bytes can be 
allocated for longer backup retention time. Each container 
can be used by many different datasets. For each container, 
CMA maintains a dataset list that records ids of the datasets 
referring to the container. A possible approach is to store 
the lists in the blank areas of containers, which on average 
is half of the chunk size. After a backup is completed, the 
backup times of the containers referenced by the backup 
are updated to the largest time in the old manifest plus one. 
CMA adds the dataset’s ID to the lists of the containers that 
are in the new manifest but not in the old one. If the lists 
are corrupted, we can recover them by traversing manifest 
of all datasets Hence, CMA is fault-tolerant and 
recoverable. 
 

 
Fig 1.3 Identification Of Authenticated User 

 
Owner Registration: 

In this module an owner has to upload the files to 
the cloud server, and then the user is  to register first. Then 
the user only can able to do it. For that he needs to fill the 
details in the registration form. These details are 
maintained in a database.   In this module, they should 
login by giving their emailed and password. 
User Registration And User Login: 

In this module user wants to access data which is 
stored in a cloud, he/she should register their details first. 
These details are maintained in a Database. If the user is an 
authorized user, he/she can download the file by using file 
id which has been stored by data owner when it was 
uploading. Owner can permit access or deny access for 
accessing the data. So users can able to access their account 
by the corresponding data owner. If owner does not allow, 
user can’t able to get the data.  
File Upload: 
 In this module Owner uploads the file (along with 
meta data) into database, with the help of this metadata and 
its contents, the end user has to download the file. The 
uploaded file was in encrypted form, only registered user 
can decrypt it.   
 

5 THE FRAGMENTATION PROBLEM 
In this methodology, we divide a file into 

fragments, and replicate the fragmented data over the cloud 
nodes. Each of the nodes stores only a single fragment of a 
particular data file that ensures that even in case of a 
successful attack, no meaningful information is revealed to 
the attacker. This methodology does not rely on the 
traditional Cryptographic techniques for the data security. 
We show that the probability to locate and compromise all 
of the nodes storing the fragments of a single file is 
extremely low. The cloud manager system upon receiving 
the file performs: fragmentation, first cycle of nodes 
selection and stores one fragment over each of the selected 
node, and second cycle of nodes selection for fragments 

D. Shanmugasundari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016,2507-2510

www.ijcsit.com 2508



replication. The cloud manager keeps record of the 
fragment placement and is assumed to be a secure entity. 
To handle the download request from user, the cloud 
manager collects all the fragments from the nodes and re-
assembles them into a single file. Afterwards, the file is 
sent to the user. User can download a file on users 
dashboard show option that file can downloadable. The 
fragmentation decreases the efficiencies of restore and 
garbage collection in deduplication-based backup systems.  

 

 
Fig 1.4 Deduplication Data Fragmentation 

 
Our deduplication storage under investigation, like 

others consists of a deduplication appliance and underlying 
storage. The deduplication appliance resides between a host 
and the underlying storage While the deduplication is under 
our full control, the underlying storage is not (no 
information/control on data layout). Each data stream is a 
byte stream representing a series of backup dataset. The 
write of an incoming data stream to the underlying storage 
begins by segregating the stream into variable-size chunks 
by identification of accurate data. A deduplication process 
subsequently eliminates any duplicated copies of chunks 
called shared chunks each of which has been stored already 
in the underlying storage. Any remaining chunks after the 
deduplication are called unique or deduplicated chunks. 
Chunk deduplication for multiple incoming data streams is 
fulfilled in a FIFO manner. Finally, in a memory fixed-size 
container becomes full of the unique chunks, it is stored 
into the underlying storage as a large write. Our 
deduplication storage has a distinct container for a different 
incoming data stream as in. Reading a data stream retrieves 
both unique and shared chunks from the underlying 
storage, whereas the write stores only the unique chunks. 
We have two read performance related concerns: 

(1) Shared chunks are likely to have been 
physically dispersed over different containers in the 
underlying storage called chunk fragmentation.  

(2)   Writes of concurrently incoming data streams 
may not exploit an expected performance benefit of large 
consecutive writes. In-storage containers for each data 
stream are desired to be physically allocated or 
consecutive, so that its stream read can retrieve the chunks 
stored in the containers sequentially. 

 

 For deduplication with a single data stream, we 
can easily assure the consecutiveness of the in-storage 
containers.  

 
6 HISTORY AWARE REWRITING ALGORITHM 

The rewriting algorithm find the data which it is existed in 
sparse container HAR loads IDs of all inherited sparse 
containers to construct the in-memory Sinherited structure 
during the backup, HAR rewrites all duplicate chunks 
whose container IDs exist in Sinherited. Additionally, HAR 
maintains an in-memory structure, Semerging (included in 
collected info in Figure 3), to monitor the utilizations of all 
the containers referenced by the backup. Semerging is a set 
of utilization records, and each record consists of a 
container ID and the current utilization of the container. 
After the backup concludes, HAR removes the records of 
higher utilizations than the utilization threshold from 
Semerging. Semerging then contains IDs of all emerging 
sparse containers. In most cases, Semerging can be flushed 
directly to disks as the Sinherited of the next backup, 
because the size of Semerging is generally small due to our 
second observation.  
 

7.       CONCLUSION 
The hybrid cloud storage is useful to further 

improve increase performance in datasets where out-of-
order containers are dominant. To avoid a significant 
decrease of deduplication ratio in the hybrid scheme, we 
develop a two algorithm such as container marker 
algorithm and history aware rewriting algorithm to exploit 
backup history and cache knowledge. With the help of 
CMA, the hybrid scheme significantly improves the 
deduplication ratio without decreasing the restore 
performance. Note that CMA can be used as an 
optimization of existing rewriting algorithms. The ability of 
HAR to reduce sparse containers facilitates the garbage 
collection. It is no longer necessary to offline merge sparse 
containers, which relies on chunk-level reference 
management to identify valid chunks. We propose a CMA 
that identifies valid containers instead of valid chunks. 
Since the metadata overhead of CMA is bounded by the 
number of containers, it is more cost-effective than existing 
reference management approaches whose overhead is 
bounded by the number of chunks. 

The over backup cloud data and establish a variety 
of privacy requirements. Among various multi-keyword 
semantics, we choose the efficient similarity measure of 
coordinate matching that is as many matches as possible to 
effectively capture the relevance of outsourced documents 
to the query keywords, and use inner product similarity to 
quantitatively evaluate such similarity measures of 
deduplication. .Alongside Data Deduplication there are 
advances in network and disk technology that provide the 
very high data transfer rate, lower disk cost and higher disk 
IO rate. 

 
 
 
 
 

D. Shanmugasundari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016,2507-2510

www.ijcsit.com 2509



REFERENCES 
[1] F. Guo and P. Efstathopoulos, “Building a high Performance

deduplication system,” in Proc. USENIXATC, 2011. 
[2] H.P. Shilane, N. Garg, and W. Hsu,“Memory efficient sanitization of

a deduplicated storage system,” in Proc.USENIX FAST, 2013. 
[3] Y. Nam, G. Lu, N Park, W. Xiao, and D. H. Du,“Chunk

fragmentation level: An effective indicator for read performance
degradation in deduplication storage, “in Proc IEEE HPCC, 2013. 

[4] M. Kaczmarczyk, M. Barczynski, W. Kalian, and
C.DubNicki,“Reducing impact of data fragmentation caused by in-
line deduplication in Proc. ACMSYSTOR, 2012. 

[5] K. Srinivasan, T. Bisson, G. Goodson, and K. Voruganti, “iDedup:
Latency-aware, inline data deduplication for primary storage,” in
Proc. USENIX FAST, 2012. 

[6] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in the
data domain deduplication file in Proc. USENIX FAST, 2011. 

[7] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restorespeed
for backup systems that use inline chunk-based deduplication,” in
Proc. USENIX FAST, 2013. 

[8] (2010).How to force a garbage collection of the
deduplicationFolderN [Online]. Available:
http://symantec.com/business/support/index?page=//content/&id=TE
CH129151 

[9]  (2010). Restoring deduped data in deduplication
systems.[Online].Available:http://searchdatabackup.techtarget.com/f
eature/Restoring-deduped-data-in deduplication-systems

D. Shanmugasundari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016,2507-2510

www.ijcsit.com 2510




